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NOTES ON THE THEORY OF OSCILLATING
CURRENTS.

By CHARLES PROTEUS STEINMETZ.
§ 1. [ntroduction. .

HE object of the following article is to present a short out-
line sketch of a modification of the method of complex
imaginary quantities, applied to oscillating currents. Such oscil-
lating currents have frequently been considered as ordinary alter-
nating currents of very high frequency, and treated as such,
while the essential differences between alternating and oscillating
currents have been overlooked. An electric current varying
periodically between constant maximum and minimum values,
that is, in equal time intervals repeating the same values, is called
an alternating current if the arithmetic mean value equals zero;
and is called a pulsating current if the arithmetic mean value
differs from zero. Alternating currents have found very exten-
sive application for light and power. Pulsating currents are the
currents given by open coil arc-light machines, or by the super-
position of alternating and continuous currents, etc.

Assuming the wave as a sine curve, or replacing it by the
equivalent sine wave, the alternating current is characterized by
the period or the time of one complete cyclic change, and the
amplitude or the maximum value of the current. Period and
amplitude are constant in the alternating current.

A very important class are the currents of constant period, but
geometrically varying amplitude, that is, currents in which the
amplitude of each following wave bears to that of the preceding
wave a constant ratio. Such currents consist of a series of waves
of constant length, decreasing in amplitude, that is in strength,
in constant proportion. They are called oscillating currents in
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analogy with mechanical oscillations, for instance of the pendulum,
in which the amplitude of the vibration decreases in constant
proportion.

Since the amplitude of the oscillating current varies, constantly
decreasing, the oscillating current differs from the alternating
current in so far that it starts at a definite time, and gradually
dies out, reaching zero value theoretically at infinite time, practi-
cally in a very short time, short even in comparison with the time
of one alternating half-wave. Characteristic constants of the

oscillating current are the period 7" or frequency N::—;—‘, the

first amplitude and the ratio of any two successive amplitudes,
the latter being called the decrement of the wave. The oscillat-
ing current will thus be represented by the product of a periodic
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function, and a function decreasing in geometric proportion with
the time. The latter is the exponential function 4,
Thus, the general expression of the oscillating current is

C=A4"* cos (2 mNt— &),
since A" = A4 = e,

Where e=basis of natural logarithms, the current may be

expressed
C=ce™ cos (2 mNt— ®) =ce™ cos (¢ — &),

where ¢=2m7/Nz; that is, the period is represented by a complete
revolution.
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.

In the same way, an oscillating electromotive force will be
represented by

E=¢e cos (¢ —&).
Such an oscillating electromotive force for the values
e=5, a=.1435 Or €°™=.4, ®=0,

is represented in rectangular co-ordinates in Fig. 1, and in polar
co-ordinates in Fig. 2. As seen from Fig. 1, the oscillating wave
in rectangular co-ordinates
osculates the two expo-
nential curves

‘ N

y== ce—®, I"l'?o % & “;\%\\\‘\\“‘
In polar co-ordinates, the [/ A0 X 6&.\\\‘}\“‘\\\\\‘““
) s X » 1 "..0 P S0 ‘\ﬂ\“““\‘\y““‘

oscillating wave is repre- 1

sented in Flg 2 by a spiral 0 5 i
curve passing the zero ‘\‘“\“‘: ::.'4‘ :§$§$"':',Z‘,"":’,’,’"’lﬂlllll"
point twice per period, 8“\: SR, X %';o,::l;,:i‘zllllz
and osculating the expo- s“ 'I',"'l/;,',’lll
nential spiral 22

y=tee

The latter is called the envelope of the oscillating wave, and is
shown separately, with the same constants as Figs. 1 and 2, in

(6

Fig. 3. ’ Fig. 4.

Fig. 3. Its characteristic feature is: The angle, which any con-
centric circle makes with the curve y=ce=9, is

tan a= = —a,

A
yap
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which is, therefore, constant, or in other words : ‘“ The envelope of
the oscillating current is the loxodromic spiral, which is charac-
terized by a constant angle of intersection with all concentric
circles, or all radii vectores.” The oscillating current wave is the
product of the sine wave and the loxodromic spiral.

In Fig. 4 let y=ce** represent the loxodromic spiral ;

let z=¢ cos (p—a) represent the sine wave;

and let  E=ce"*® cos (¢ —w) represent the oscillating wave,

We have then tan 8= éi‘%

_- sin (¢ — &) —a cos (p—a)
cos (¢ — o)
= —{tan (p— @) +a};
that is, while the slope of the sine wave, z=¢ cos (¢ —d), is repre-
sented by tan y=— tan (¢ —a),

the slope of the loxodromic spiral y=e¢e is
© tan e= —a= constant.
That of the oscillating wave £=e¢e cos (¢ —@a) is
tan 8= — {tan (¢ — @) +a}
Hence, it is increased over that of the alternating sine wave by
the constant 4. The ratio of the amplitudes of two consequent
periods is

E
_A = 2 — _2""‘,
E

A4 is called the numerical decrement of the oscillating wave, a
the exponential decrement of the oscillating wave, @ the angular
decrement of the oscillating wave. The oscillating wave can be
represented by the equation

E=eedte cos (p—b).

In the instance represented by Figs. 1 and 2, we have, 4=.4,
a=.1435, «=8.2°
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§ 2. Impedance and Admittance.

In complex imaginary quantities, the alternating wave
z=¢cos (p—®)
is represented by the symbol
F=¢(cos @+ sin &) =e, +je,.
By an extension of the meaning of this symbolic expression,

the oscillating wave E=e¢e~** cos (p—a) can be expressed by the

symbol
E=¢(cos @+ sin @) deca= (¢, +se,) deca,

where a=tan « is the exponential decrement, « the angular decre-
ment, ¢~> the numerical decrement.

Inductance.

Let »= resistance, L = inductance, and s=2 #w/VL = reactance.
In a circuit excited by the oscillating current,
C=ce= cos (¢ — w) =c(cos ®+7 sin &) dec a= (¢; +7¢,) dec a,

where €;=CCOS B, ca=csin®d, a=tana.
We have then,

The electromotive force consumed by the resistance » of the
circuit

E,=rCdec e

The electromotive force consumed by the inductance L of the

circuit,

ac dC _ dC
== —_— L —_—=5—
E,=L 7 27NV, 7 sd‘l’
Hence E,= —sce**{sin (p—d) +a cos (p—a)}
__sce® .o .
= s w sin (¢ — &+ «).
Thus, in symbolic expression,
E,=——_§{_sin (@—a)+s cos (®@—e)} dec o

cos &
= —sc(a+7)(cos @+ sin @) dec «;
that is, .= —sC(@+7) dec e
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Hence the apparent reactance of the oscillating current circuit
is, in symbolic expression,
S=s(a+/) dece.
Hence it contains an energy component as, and the impedance
is
U=(r—S) dec a= {r—s(a+j)}dec a=(r—as—js) dec .

Capacity.

Let »=resistance, K'=capacity, and 2= EI_K = capacity react-
.

ance. In a circuit excited by the oscillating current C, the
electromotive force consumed by the capacity X is

Ey= f Car= Z—W;W(fw(p:kfa@;

or, by substitution,

E, =k} ce* cos (¢ — d)dp

= fazce—"‘f{sin (¢ — &) —e cos (p— &)}

Y 2 s
(1 +a?) cos &

sin (p—d—a) ;

hence, in symbolic expression,

E,= (I—_'_—;)ccm‘{ —sin (& +®) +7 cos (& + ) }dec «
= faz(—-a+j)(cos &+ sin @) dec «;
hence, E,‘=;—_—ft2(—a+j)6'dec o,

that is, the apparent capacity reactance of the oscillating circuit
is, in symbolic expression,
_ &
1442

We have then:
In an oscillating current circuit of resistance 7, inductive react-

(—a+y)deca.
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ance s, and capacity reactance £, with an exponential decrement q,
the apparent impedance, in symbolic expression, is:

. ~ ,
U= {r——s(a+j)+~l+—az(—a+j)}de0a,

k . £
= {r—a(s—}— H_az)—_;(:— I+a2>}dec a,

=Va]Sas

and, absolute,

u¢= r62+562
2
=\[r—a(s+ % >2+|:s—- % .
1+42 1+a?

Admittance.

Let C=ce~* cos (¢ — &) =current.
Then, from the preceding discussion, the electromotive force con-

sumed by resistance #, inductive reactance s, and capacity react-
ance 4, is

E=ce—“"’{005 (4"";’)["—‘”_ I _:az,é]—-sin (¢_6)|}_ I —faZJ}

=cue* cos(p—d+9),

k

s—= g
where tand=—-"2

r—as— k£

1+a2

£ \2 a 2
u"=\/<s— 1+a2> +(r_a:_ 1+a2k> ’

substituting &+ 8 for &, and e=cx,, we have

E=ce cos (p— ),
C=uie*°4’ cos (p—ad—9)

cos & ~ . sind
. cos (¢ — o) + .

=¢ge—¢ {

sin ($— ) |3
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hence in complex quantities,
E=c¢(cos @+ sin &) dec o,

C=E{C°S 8+jsin S}deCa;

or, substituting, ‘ ‘
ryr—as— a 2
C=E e 1+a ;
a
(S I+a2> +(r—as_1+a2k)
k
g I+a?

dece.

+/-
£ \? a 2
( 1+a2> +<r as_1+a2k>

Thus in complex quantities, for oscillating currents, we have:
conductance,

ryr—as—

k
I+a?

p= 3
£ \2 a 2
< : +a2> +(1f as— : +a2k>

susceptance,
S— %
I1+a?

PRV FEAYE
(S I+a2> +<r~as_1+a2k>

admittance, in absolute values,

g

1

\/ Eo\2 a 2;
( - I+az> +(”““"“172k>
o=tk

1+a? TS I1+4a2

T=p+jo= IRV a )
("“" 1+a2> +<7_’”_ 1+ )

Since the impedance is

. a N\ .k \_ .
U——-(r—as——l—_}_—aﬁ—-k) _7<s ﬁl+a2>—11,—js,,

I I 7, S
we have T=—; v=—; p=—%; -
U’ u,’ P %2 u2

v=Vpitai=

in symbolic expression,
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that is, the same relations as in the complex quantities in alter-
nating current circuits, except that in the present case all the
constants 7, S, %, p, o, v, depend upon the decrement a.

§ 3. Circuits of Zevo Impedance.

In an oscillating current circuit of decrement «, of resistance #,
inductive resistance s, and capacity reactance 4, the impedance
was represented in symbolic expression by

. a . %
U= r,—]s¢—<r—as—m§k> —_;(s—- m—z)

or numerically by

u=m=\/<r—as———‘—z——k>2+(;r— i )2

1+a? 1442/’

Thus the inductive reactance s, as well as the capacity react-
ance 4, do not represent wattless electromotive forces as in an
alternating current circuit, but introduce energy components of
negative sign

—as— k;

a
1+a?
that means,

“In an oscillating current circuit, the counter electromotive
force of self-induction is not in quadrature behind the current, but
lags less than 9o° or a quarter period, and the charging current of
a condenser is less than go°, or a quarter period ahead of the
impressed electromotive force.”

In consequence of the existence of negative energy components
of reactance in an oscillating current circuit, a phenomenon can
exist which has no analogy in an alternating current circuit, that
is, under certain conditions, the total impedance of the oscillating
current circuit can equal zero:

U=o.

In this case we have

k=0; s—

r—as—

a —
1+4a? 14+a2
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substituting in this equation
I
s=2alNL; b=—rx;
i 2nNK’
and expanding, we have
I

4= —————
4L _,
r»K
r 4L 7
SN
V= INAR T 24l
That is,
“If in an oscillating current circuit, the decrement a= 2 )
4
Vi

4
4ma
is zero; that is, the oscillating current, when started once, will con-
tinue without external energy being impressed upon the circuit.”
The physical meaning of this is: “If upon an electric circuit a
certain amount of energy is impressed and then the circuit left to
itself, the current in the circuit will become oscillating, and the
oscillations assume the frequency N=47; 7 and the decrement
I

and the frequency V= 7 the total impedance of the circuit

a=

aL_
7K
That is, the oscillating currents are the phenomena by which

an electric circuit of disturbed equilibrium returns to equilibrium.

This feature shows the origin of the oscillating currents, and
the means to produce such currents by disturbing the equilibrium
of the electric circuit, for instance by the discharge of a condenser,
by make and break of the circuit, by sudden electrostatic charge,
as lightning, etc. Obviously, the most important oscillating cur-
rents are those flowing in.a circuit of zero impedance, representing
oscillating discharges of the circuit. Lightning strokes usually
belong to this class.

§ 4. Oscillating Discharges.
The condition of an oscillating discharge is U=o0; that is:

P S, Ne_¥ o 7 4L _

4L 2= sal T 2LVPR t
rnK
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If »=o0, that is, in a circuit without resistance, we have e=o,

I
N=—-o
2o/ LK
ment, and the frequency is that of resonance.

; that is, the currents are alternating with no decre-

If ;‘}2—]%—— 1<0, that is, »>2 -[]f{—, @ and &V become imaginary;
that is, the discharge ceases to be oscillatory. An electrical dis-

charge assumes an oscillating nature only, if < 2\/%. In the case

r=2\/% we have a=o, NV=0; that is, the current dies out with-

out oscillation.

From the foregoing we have seen that oscillating discharges, —
as for instance the phenomena taking place if a condenser charged
to a given potential is discharged through a given circuit, or if
lightning strikes the line circuit, —is defined by the equation:
U=odeca.

Since  C =(¢+je) dece, E,=C(Crdece,

E,= —sC(a+7) deca, E,‘=I—%C(—a+j) dec o,

we have y—as— _k=o0,
1+a
&
—s5+ =0,
1+a2

hence, by substitution,

E,=sC(—a+y)dece.
The two constants, ¢; and ¢, of the discharge, are determined by
the initial conditions, that is, the electromotive force and the
current at the time fz=o.

Let a condenser of capacity X be discharged through a circuit
of resistance » and inductance L. Let e=electromotive force at
the condenser in the moment of closing the circuit, that is, at the
time /=0 or ¢=o0. At this moment the current is zero, that is,

C =jc, ¢y=0.

Since E,=sC(—a+j)decae=e¢ at ¢$=0,
we have se;Vi+tat=e orvcz=_,L._..

sV1+a?
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Substituting this, we have,

C =j ———deca, E,='e—1—-—decu,
s\/ 1+a? 4 sV1+a?
E,= E=——2f__(14+ja)dece,
\/ T T (1+7a)
the equations of the oscillating discharge of a condenser of initial
voltage .e.
Since s=27wNL,
I
Q= ————
NEZ
r»K
N_
zm 2 aL
LA\ Ly
we have =523 \Vap~ s

hence, by substitution,

C=je\/é—{deca, E’=jer\/—§deca,
er 4L .
EB_Z\/—< /M{ _j>deca,
\/K< —————-1+j>dec:x,

=, ALL_
VZK 4wl

the final equations of the oscillating discharge, in symbolic
expression.

§ 5. Numerical Examples.
To get an estimate of the numerical values of the constants of oscillating
discharges, some cases may be investigated.

A. VERY HiGH FREQUENCY.

A short, straight conductor may be terminated by two balls. The balls repre-
sent the capacity, while the conductor represents the resistance and inductance.
Without entering into the exact calculation, let the resistance of the conductor



No. 5.] THEORY OF OSCILLATING CURRENTS. 347

7 = .0001 ohms; the inductance of the conductor Z = .00025 millihenry; the
capacity of the two balls X" = 10-% microfarads. We have then

a=10"7; angle a = 5.7 X 107%; V=32 X 10%;

that is, 320,000,000 cycles per second.
The amplitude is reduced to 1} after the time 4, or angle ¢, where
e = .01; ¢, = 27NVt,;
hence, ¢y = 4.6 X 107; £, = .023;
that is, after .023 second the oscillation has practically died out; that is, de-
creased to 135 of its amplitude, after making 7,400,000 complete oscillations.
The equations of the oscillating discharge are in this case, at ¢ = 10,000 volts
initial charge,
C=20jdeca; E,= .0o2jdeca.
E, =(10,000 — .0015) deca; Ei = — (10,000 + .001;) deca.
As seen, for a moment 20 amperes flow at a potential of 10,000 volts, repre-
senting an instantaneous flow of about 100 K.W.
To make the discharge non-oscillatory, the resistance would have to be
r>2 f—(—,>looo ohms ; that is, more than 10,000,000 times as much as assumed.

That is, a wet string, or similar conductor, will not allow electrical oscillation.

B. UNDERGROUND CIRCUIT OF FOUR MILES IN LENGTH, OF TWO LEAD-
COVERED CABLES CONSISTING OF WIRE No. oo, B. & S.
7 = 3.3 ohms; L = 7.5 microhenrys; & = 1.2 microfarads;

hence, a=.021; N=1670; ¢, = .021;

that is, in .021 seconds, or after 35 cycles, the oscillation has died out to r%w of

its initial value. At ¢ = 2000 volts initial charge, the equations of phenomenon

will be
C = 25.37deca; E, =83.57deca;

E, = (2000 — 425) deca FE; = — (2000 + 427) deca.
The phenomenon will become non-oscillatory ; that is,
N =0; a =ow; for » = 158 ohms.

that is, in such cables electric oscillations can take place at comparatively
moderate frequency, and of considerable duration.

C. TRANSATLANTIC CABLE.

Assuming approximately, »=40,000 ohms, L=30 h., K=1300 microfarads;
we then have 7< 300, the condition under which electrical oscillations can take
place.
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If the resistance were 3}y the value it is in reality, that is, if we had
7 = 200 ohms, we could have @ = 0.88, V = 0.6, and in this case, at ¢ = 100 volts
initial charge, the equations of the phenomenon would be, C=0.658; deca,
E,=131.6j deca, £, = (75 — 667) deca; E;,=— (75 + 667)deca; that is,in a
transatlantic cable electrical oscillations cannot take place, due to its high resist-
ance. If, however, the resistance were low enough to permit electrical oscilla-
tions, that is, less than ;15 of what it is in reality, the oscillations would take
place extremely slowly, each complete oscillation occupying more than one
second.

In reality, due to the capacity not being centralized in a condenser, but dis-
tributed over the whole circuit, the phenomenon is more complex, and bas to be
investigated on the lines of circuits containing distributed capacity.

We see, however, from these instances the enormous range of frequencies, at
which electrical oscillations take place, from frequencies of hundred millions of
cycles per second to a frequency of more than a second per cycle.

§ 6. Oscillating Current Transformer.

As an instance of the application of the symbolic method of
analyzing the phenomena caused by oscillating currents, the trans-
formation of such currents may be investigated. If an oscillating
current is produced in a circuit including the primary of a trans-
former, oscillating currents will also flow in the secondary of this
transformer. In a transformer let the ratio of secondary to pri-
mary turns be . Let the secondary be closed by a circuit of total
resistance, 7;=#,'+7,'/, where /= external, 7,/ = internal, resist-
ance. The total inductance L,=LZL,+L,", where L,/= external,
L,"= internal inductance, total capacity, K;. Then the total

admittance of the secondary circuit is
I

’

T,=(p;+joy) deca= p y2
(rl——asl-— mk]) —](31— " +a2>

where s;=27/NL,= inductive reactance; 4= —L__— capacity
2aNK

reactance. Let »,= effective hysteretic resistance, Z,= induct-
ance; hence, so=2 w/VL,=reactance ; hence,

- r
(ro—aso) =75
of the primary exciting circuit of the transformer; that is, the
admittance of the primary circuit at open secondary circuit.

To=py+704= = admittance
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As discussed elsewhere, a transformer can be considered as con-
sisting of the secondary circuit supplied by the impressed electro-
motive force over leads, whose impedance is equal to the sum of
primary and secondary transformer impedance, and which are
shunted by the exciting circuit, outside of the secondary, but inside
of the primary impedance.

Let »= resistance ; L = inductance ; K= capacity ; hence,

s=2 VL = inductive reactance,

27rfNK= capacity reactance of the total primary circuit, in-
cluding the primary coil of the transformer. If £/=F/ deca
denotes the electromotive force induced in the secondary of the
transformer by the mutual magnetic flux; that is, by the oscillat-
ing magnetism interlinked with the primary and secondary coil
we have (;=E,T, deca= secondary current,

Hence, C) =p, C, dec a=p, E'T, dec «= primary load current, or
component o,f primary current corresponding to secondary current.

Also, C0=4 E,/T,dece=primary exciting current; hence, the
total primary current is ’
C=C/+C,= % T, +7°T;} deca.

>~
E'= £1 dec e=induced primary electromotive force. Hence the

total primary electromotive force is

. /
E=(E'+CU)dec a=% {1+ UTy+p2UT,}dec e

In an oscillating discharge the total primary electromotive force

E=o0; that is,
1+UT,+22UT=0;
or, the substitution

a . %
(r—-zz.v— - +a2k> —J (s - +a2)

(ro—aso) —7%
<r——a.r— a k) —j(s— % )
I+a? 1442

+7 =
(rl—-asl— a /zl)——j(sl.— —-él—z>

1+

1+a? I+ a4
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I

27 NK’
a complex imaginary equation with the two constants z and V.

Separating this equation in the real and the imaginary parts, we
derive two equations, from which the two constants 2 and &V of
the discharge are calculated.

If the exciting current of the transformer is negligible; that is,
if T,=o0, the equation becomes essentially simplified :

<r—as— a k)—j(s— B )
1+22 1+a? 1+a?)

a . AN\
(’1“”1 - I+az’él) ~/ «(‘1‘ T;‘;)
(1’]—a51— - :az,él> +p2<7'—a5— - _tazk):O;

£ k
- 2( §— =0:
(51 I+a2>+‘ﬁ <S I+a2> 0;

or, combined :

Substituting in this equation, s=2 7 /VK, k= etc., we get

that is,

(ry—2zas))+p%(r—2as)=o,

r o r=2a(s+%),

byt %= (140 (51 +7%).
Substituting for sy, s, &, £, we have

I

\/ 4(Ly+p*L) 1
(n+*)* K +1°K)

o NP nAptr (| 4 AAL)
2a(Ly+7°L) ~ 2(Lyi+7°L) N+ 70K +7°K)

I,

El
E=71 f1+22UT,} deco,
C=pE,/T, dece,
Ci=E{/T;dece,

the equations of the oscillating current transformer, with £/ as
parameter.

December, 1895.



